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A B S T R A C T

In this paper, a new infrared image detail enhancement algorithm has been raised. The original
infrared image has a wide dynamic range of 12- or 14-bit.This suppresses the human observation
range of 8-bit. Usually the original infrared image needs to be compressed and gray-scale re-
mapped for displaying. However, the normal way of doing this cannot give a better visual effect
for the human observer. In this case, detail enhancement algorithms of infrared image occur.
Modern detail enhancement algorithms can extract the detail information from an original in-
frared image and separate the image into different layers, and each layer will processed with
different strategy. Although good performance has been proved for these algorithms, there are
still certain deficits such as too much computational time, low working efficiency, hard appli-
cation flexibility and so on. Under this circumstances, we propose this new algorithm to over-
come these problems. This algorithm uses a two dimensional convolution to separate the detail
information from an original infrared image, and turn the original image into the detail layer and
the base layer. The detail information will be enhanced without any unwanted artifacts. During
the detail extraction, We speed up the whole computational process by transforming the two
dimensional convolution into two one dimensional convolutions, and then express the one di-
mensional convolution with the iterative computation. After adding the enhanced detail layer
back to the histogram equalized base layer, the visual quality of the original image can be im-
proved. This algorithm not only gives better detail enhancement performance, but also reduces
the computational time. Figures and data tests show the priority of our suggestions.

1. Introduction

Infrared imaging has been applied to many industrial, civilian and military fields for so many years. Modern high-quality infrared
thermal imagers display images in a wide dynamic range. Usually the raw sensor outputs digital signal within 12- or 14-bit range.
However, human observer can distinguish only about 128 level of gray scale in an image [1]. Thus, the raw infrared images need to
be processed into the suitable display range. Many histogram equalization (HE) algorithms can done the job above [2–6], these HE
algorithms usually compress the whole gray scale of a raw infrared image into the full 8-bit display range. The contrast of the infrared
image will be re-mapped in order to illustrate more scenarios for human observer. But these HE algorithms somehow have certain
deficits, for example, they might produce significant noise. In this case, several modified HE algorithms occur such as the contrast
limited adaptive histogram equalization (CLAHE) [7]. This algorithm has more flexibility in choosing the local histogram mapping
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function, by selecting the clipping level of the histogram, undesired noise amplification can be reduced. In summary, these HE-based
methods could compress the dynamic range of a raw infrared image into satisfied observation range, however, they lack flexibility in
manipulating small details of the raw image since they are based on only the histogram information, which makes the histogram
equalization algorithm cannot fully illustrate the detail within the infrared image. Ergo, many kinds of detail enhancement methods
have been raised to lift the dynamic range of the raw infrared images.

Modern detail enhancement algorithms usually process the raw infrared in the following thoughts: Consider the raw infrared
image is composed by two parts which are the detail layer and the base layer. The detail layer contains high frequency information
while the base layer contains the histogram information. After the separation of the image, the detail layer will be enhanced by
certain ways, while the base layer will be histogram equalized, then the two processed layers will be added back to form a new image.
This new image is well detail enhanced for the observer. The most important thing in this process structure is that the edge-preserving
filter has great ability to distinguish image detail from the noise. To our knowledge, the image detail and the noise of an image are
both the high frequency information, which means that, during the separation, the noise might be mixed into the detail layer and
enhanced as well. If this happens, the image quality of the final result will be degraded. So the edge-preserving filter has to be
carefully chosen. In 2011, Zuo et al proposed a method using the bilateral filter to deal with the image [8,16,17]. The bilateral filter is
a very good non-linear edge-preserving filter, this method gives an inspiration to the later researcher. But the bilateral filter has
certain deficits, for example, since it has the feature of non-linearity, it will produce the gradient reverse effect which causes the
“ghost effect” at the strong edge position of an infrared image. In 2014, we proposed a method using the guided image filter to modify
the processing procedure [9,18]. We consider that the guided image filter is a linear filter, thus the gradient reverse effect will not
occur. The results proved our assumption. But as it is a linear filter, the guided image filter cannot distinguish the detail and the noise
as effective as the bilateral filter. We kept on our working and to the year 2016, we proposed a new method with the modified
bilateral filter called the joint-bilateral filter to enhance the image details [10]. The joint-bilateral filter uses two adjacent images to
compute the detail information, compare to the normal bilateral filter, the gradient reverse effect is well suppressed. Also, it has good
detail separation performance. At the meantime, we discover some problems of these detail enhancement algorithms when we apply
them to the real equipment. The most depressing aspect is that the complex computation of these edge-preserving filters takes too
much calculation time for real-time realization. This happens not only in the software programming on the PCs or laptops, but also
when migrates the algorithm into the FPGAs. Although we have done significant job to realize both these algorithms into real-time
system with the hardware description language, the on-chip logic elements of the FPGA are much occupied and the power con-
sumption is hard to lower down. Meanwhile, these filters have several parameters for the users to adjust, which means that, the
realization of self-adaptive is almost mission impossible.

Based on the deep study of the infrared thermal imager, we figure out that, since the total response model can be described as a bi-
exponential statistical fitting model [11], we propose a new detail enhancement algorithm in this paper with the Bi-Exponential Edge
Preserving Smoother (BEEPS). The BEEPS is raised by Philippe Thevenaz et al. for filtering image noise [12]. We have made
modification for BEEPS to make it well adapt to infrared image. The new proposed algorithm has the advantage of very fast and easy
calculation, the improvement of the computational time is in orders of magnitude. Besides, it also has the advantage of easy ap-
plication. It must be point out that, the calculation of this new algorithm only concerns about the dimension of the input image, and
has nothing to do with neither the image data nor the parameters, not even the degrade of filtering.

The structure of this paper is organized as follows: in section II, the detailed theory of this new algorithm is demonstrated; in
section III, the experimental results and the results comparison with other algorithms are demonstrated; in section IV, we give
conclusion of our work.

2. Basic theory of our research

2.1. Brief of our idea

In Section 2, we will fully introduce our new infrared image detail enhancement algorithm. The whole processing procedure can
be described as the following flow chart:

As shown in Fig. 1, the original infrared image will be first filtered by the BEEPS, since the BEEPS is used to smooth a image, we
reverse the computation by subtracting the filtered result from the original image, then the detail layer can be acquired [13]. The
detail layer contains most of the high frequency information, as we mentioned above, noise might be mixed into the detail layer, so
we have to carefully tune the filter parameters to avoid the noise and enhance the details. The filtered result can be recognized as the
base layer which contains most of the energy of the image. That is to say, the contrast of the image is determined by the base layer.
According to the nature that the infrared image has high dynamic range, the base layer needs to be compressed using histogram
equalization method. After processing on both layers separately, we add these two layers back together to form a new processed
image [14]. The brief steps of this algorithm is described as follows:

1 Input an original 14- or 16-bit raw infrared image.
2 Conduct the BEEPS onto the raw infrared image, and the image will be filtered into detail layer and base layer.
3 The detail layer will be enhanced by controlling the key parameters and the gain coefficients to reach a satisfied level.
4 The base layer will be histogram equalized to compress the gray scale of the raw image into 8-bit display range, here, a simple
accumulative histogram equalization method will do.

5 After combining the enhanced detail layer and the histogram equalized base layer back together, we can get an improved image
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with good visual effect.

Next, we will give specific discussions about how the BEEPS works and how the key parameters affect the final detail en-
hancement performance.

2.2. Basic theory of BEEPS

The BEEPS is a kind of the non-linear filter [12,15]. To our knowledge, the general low pass filters such as the Gaussian filter only
concern about the spatial region, while the non-linear filter concern about both the spatial and the range region. If two adjacent pixel
value which belong to a strong edge are quickly changed, the Gaussian filter cannot distinguish this kind of changing and the edge
then cannot be preserved. Usually in the normal bilateral filter [8], two kernels are used in calculating the spatial filtering and the
range filtering, if a strong edge is detected, the spatial filtering will affect the range filtering by a certain decay of the value in the
range kernel, which makes the range filter preserving the edge. While in BEEPS, it concentrates on both the spatial and range region
too. The main difference is that, the BEEPS separates the two-dimensional non-linear filtering into two one-dimensional progressive
computation process. This not only simplifies the calculation, but also maintains the performance of the detail extraction, which
makes the BEEPS very useful.

The BEEPS algorithm consists of a pair of one-tap recursions. r represents a range filter. The parameter λ controls the degree of
smoothing of a convolutional space filter with impulse responses. The first recursion is progressive, and x k[ ] is the current sample of
an input sequence x at location k. We can recursively compute the elements of an auxiliary sequence as eq.1:

= − + +ϕ k ρ k λ x k ρ k λϕ k[ ] (1 [ ] ) [ ] [ ] [ 1] (1)

Where

= +ρ k r x k ϕ k[ ] ( [ ], [ 1]) (2)

The second recursion is regressive and very similar to the first one, except for a reversal of the order in which the indices are
traversed. We recursively compute a second auxiliary sequence as:

= − + −φ k k λ x k k λφ k[ ] (1 ϑ[ ] ) [ ] ϑ[ ] [ 1] (3)

Where

= −k r x k φ kϑ[ ] ( [ ], [ 1]) (4)

The BEEPS can be computed by merging the resulting progressive sequence and regressive sequence to produce the samples of the
output sequence as:

=
− − +

+
y k

φ k λ x k ϕ k
λ

[ ]
[ ] (1 ) [ ] [ ]

1 (5)

For general use of BEEPS, the smoothing parameter λ is often choosing between [0,1], although r can be chosen freely, it is
customary to assume that it takes the shape of a centered bump function. In particular, a prototypical instance is the de-normalized
Gaussian function. Here we choose r as the following Gaussian function:

=
− −

r u v e( , )
u v

σ
( )

2

2

2 (6)

Fig. 1. The processing flow chart of our algorithm.
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The standard deviation σ represents the width of the chosen bump function. When a strong edge occurs, the σ restrains the
smoothing effect along with λ in order to preserve the edge. It has to be point out that, the calculation of BEEPS needs no convolution
to participate, which means that, unlike the bilateral filter and the guided image filter, the BEEPS is way much faster than them. The
filtering effect is simulated as the following Fig. 2:

As we mentioned above, BEEPS preserves the edges as good as the bilateral filter. This can be seen from Fig. 2, at the adjacent
region of a strong edge, the BEEPS will not destroy or blur the shape of edge while filter the high frequency information away from
the edge. By correctly selecting the parameter λ and σ , the BEEPS can effectively distinguish noise from the high frequency details.
Next, we give demonstration on how these two parameters working on smoothing the images, or in other words, extracting the
details.

By expanding the recursions, Eq. (1) and Eq. (3) can be rewritten in a way that conceals the explicit dependence of φ k[ ] on
−φ k[ 1] and of ϕ k[ ] on +ϕ k[ 1], then these two equations are shown as follows:

∑ ∏=
⎛

⎝
⎜ −

⎞

⎠
⎟ − − − + −

=

∞

=

=

φ k k p k n λ λ x k n k λ x k[ ] ϑ[ ] (1 ϑ[ ] ) [ ] (1 ϑ[ ] ) [ ]
n p

n
n

1 0

1

(7)
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⎟ − + + + −

=
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=
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ϕ k ρ k p k n λ λ x k n ρ k λ x k[ ] [ ] (1 ϑ[ ] ) [ ] (1 [ ] ) [ ]
n p

n
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1 0

1

(8)

Then, the output Eq. (5) of BEEPS can be rewritten in the next form:
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Where, = −
+Λ λ

λ
1
1 is the normalize factor of λ. We can use the same strategy to rewrite the normal bilateral filter into the form like Eq.

(9), and it goes like:
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Comparing Eq. (9) and Eq. (10), we calculate the limitation of the respective terms and get the following results:
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We can see from Eq. (11), once the value of λ set to 0, all three limitations with Eq. (11) have the same results and equal to 1, in

Fig. 2. The smoothing effect of BEEPS.
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this case, the BEEPS has the same form of the normal bilateral filter. That is why the BEEPS can maintain the edge preserving
performance as the bilateral filter. In the real application, the value of λ will not be set as 0, we usually choose it within [0,1]. That
means, the BEEPS has its own advantage in preserving the edge.

Next, we show a figure on different value of λ and σ affects the filtering performance.
It can be seen from Fig. 3 that, the parameters λ and σ work hand in hand to affect the filtering result. According to the former

analysis, λ is a smoothing parameter, while σ is a ranging parameter. Here we explain more about these two parameters. Since the
BEEPS has the character of recursion computation, the eq.1 and eq.3 need to be initialized as follows:

=
− = −

φ x
ϕ k x k

[0] [0]
[ 1] [ 1] (12)

When the calculation starts, the BEEPS will initialize the two recursive term, then during the process on the input image, λ works
in the special region of an image, nd determines whether a strong edge or a detail information is encountered. Here we have to point
out, the BEEPS not only extracts the edge information, but also details in the adjacent pixels which highly changed in gray values. If λ
is chosen bigger, more detail information will be spot out and categorized into the detail layer, otherwise, less detail information will
be spot out. Fig. 3 proves that when λ =0.9, the detail extraction is better than when λ =0.1 and λ =0.5. However, a problem occurs
when extracting the detail with BEEPS, that is, the noise problem. Only with the effect of λ is not sufficient to distinguish noise from
the details, so the work of σ begins. σ is the standard deviation of the range filter r , it determines whether an edge or detail spot out
by the parameter λ can be categorized into the detail layer. When pixels are in a non-edge region, the σ in the bump function of r
helps the iterate the Eqs. (1) and (3). While in the edge region between indices (k-1) and k, the σ will reinitialize ϕ k[ ] and φ k[ ] before
the recursion is resumed. So the total computation speed of BEEPS is way much faster than other edge-preserving algorithms. In real
application, if σ is chosen bigger, the noise will be eliminated from the detail. In Fig. 3, when we choose σ =13 and λ =0.9,we can
see that, the detail information appeals to be the best, and the noise is hardly seen. Next, we give clear demonstration of our whole
processing procedure with this pair of parameters as follows:

It can be seen from Fig. 4 that, the processed image has been enhanced the details, meanwhile, the gray scale of the original image
has been mapped into a much satisfied level. Neither too bright nor too dark region exists in the image. The enhanced detail in
Fig. 4(c) appears extremely clear. More sophisticated analysis and comparison of our new algorithm and the former raised methods
will be demonstrated in the next section.

Fig. 3. Parameter performance of BEEPS on smoothing images.

Fig. 4. The processing result of our new algorithm. (a) the original histogram equalized infrared image; (b)the detail extraction; (c) the final result of
our algorithm.
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2.3. Histogram equalization process of the base layer

The BEEPS separates the raw infrared image into the detail layer and the base layer. The detail layer is enhanced during the
separation according to the parameters σ and λ, while the base layer which directly concerns about the contrast of the processed
image has to be processed by the histogram equalization in order to compress the raw image into 8-bit range for human observation.
Here we briefly give the main procedure of the histogram equalization in our method.

We binarize the base layer with a threshold T. The number of pixels of the total gray level in the raw infrared image will be
considered as valid when it surpasses T, otherwise it will be considered as invalid. This identification can be written in the following
equation:

= ⎧
⎨⎩

<
<H x

n T
n T( )

0 ,
1 ,

x

x (13)

Where, nx is the number of pixels with the same gray level x . In Eq. (13), we use the threshold T to control the total contrast of the
processed image. Then, we can get the cumulative distribution of the raw image written in the following equation:

=
⎧

⎨
⎪

⎩⎪

=

∑ =
−D x

x

H y

n
other

( )

0 , 0

( )
,y

x

valid

0
1

(14)

After this, the base layer can be mapped into the dynamic range R:

=R n Dmin( , )valid (15)

Here, nvalid is the total number of the indicated valid gray values, and D is the display range of a normal 8-bit monitor. If the dynamic
range of the raw image is not high enough, the output range should not be mapped because if we do so, the final image will look very
dark and noisy. The valid gray level could be a very small value. If this happens, the equalization process should be adjusted as eq.16
to make it good:

= − +I D R
P

D I R( ) [ ]*BP B (16)

In eq.16, IBP is the mapped base layer, IB is the original base layer with less valid gray levels. P is a parameter for tuning the
brightness. We can see that, the adjusted base layer projection will not be dark when modifying the factor −D R

P
( ) into a high value.

3. Analysis and comparison

In this section, we will give clear demonstration of the performance of our new algorithm in infrared image detail enhancement.
The test platform is a laptop with Intel i7-4710 processor. We will compare the performance through 3 aspects: the visual effect, the
computational time and the background variation-detail variation (BV-DV) index. We use 4 edge-preserving filters to process all 5
infrared images and compare the results, which are the bilateral filter method, the guided image filter method, the joint-bilateral
filter method and our new method [9–11]. According to Fig. 1, the edge-preserving filters extract the detail layer, while the base layer
needs to be histogram equalized. We set the same mapping threshold to conduct the histogram equalization in order to compare the
detail extracting and enhancing performance only. The experimental results are objective.

3.1. Visual effect comparison

In the first test set, we can see that, the new algorithm clearly has the best processing performance. Since we use the same
threshold to conduct the histogram equalization onto the base layer, the final performance of these 4 methods can be judged all by the
effect of each edge-preserving filter. Let us take a look at the colored boxes in Fig. 5(b)-(e), in the yellow boxes, there are five Chinese
characters on the walls. Fig. 5(a) shows that, these characters cannot be recognized by the human observer. After the detail en-
hancement, they can be distinguished. The bilateral filter, joint bilateral filter and our new method perform better than the guided
image filter, which proves that non-linear filter has the advantage of extracting details than the linear filter. Although the bilateral
filter, joint-bilateral filter and the BEEPS are all belong to the non-linear filter, these are still differences. Also in the yellow boxes,
clearly the detail looks much obvious in Fig. 5(e) than in Fig. 5(b)-(d). At the meantime, let us take a look at the red boxes in Fig. 5(b)-
(e), the performance appears even more unanimous. The dark region spot by the red boxes in Fig. 5(b) and Fig. 5(d) is still dark, but
this time, the guided image filter gives a better enhancement to this region. However, it does not compare to the performance of our
new algorithm. We can see from Fig. 5(e), the contents in the dark region can be seen clearly. Finally, the scenario in Fig. 5(e) has
been processed better, no matter the roof of the building, the tree leaves, windows, bars, an so on.

In Fig. 6, we can see that, in the original image, we cannot tell the mountain far away, the bilateral filter, the joint-bilateral filter
and guided image filter can show us something, but with our new algorithm, the mountain shows its whole face. Also we can see from
the red boxes, the details on the building are all showed up out of the shadow. One other thing is that, the contrast is better with the
BEEPS than the other methods, which makes the processed image look much satisfier and much real.

In Fig. 7, the region in the red boxes are parts of the mountain, the performance with our new algorithm is better than the other
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three. Also in the yellow boxes, the leaves appear much clearer with our new method.
In Fig. 8, we choose an image with extremely high temperature object in it. The solder iron has the temperature up to almost

400℃, such high temperature compresses the histogram of the original image into an extreme way, no background object can be seen
under this situation. After filtering with these 4 method, the detail has been extended and one lamp showed up. It is clearly that, our
algorithm is better than the others. The lamp in Fig. 7(e) is brought out the dark most. Meanwhile, the detail of muscle and vein in the

Fig. 5. Test set 1 of the enhancing performance. (a)the original image with normal histogram equalization; (b)detail enhancement with the bilateral
filter; (c)detail enhancement with the guided image filter; (d)detail enhancement with the joint-bilateral filter; (e)detail enhancement of our new
algorithm with BEEPS.

Fig. 6. Test set 2 of the enhancing performance. (a)the original image with normal histogram equalization; (b)detail enhancement with the bilateral
filter; (c)detail enhancement with the guided image filter; (d)detail enhancement with the joint-bilateral filter; (e)detail enhancement of our new
algorithm with BEEPS.
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human face is extract more than the others.
Fig. 9 is the final visual comparison. As it can be seen, the red boxes show that our method can extract more detail and have better

enhancing performance. Meanwhile, the yellow boxes show that, our algorithm can get rid of the shades by the enhancing effect.
All 5 figure comparisons give the same conclusion that, our new algorithm with the BEEPS has the best visual effect of the detail

enhancement. The processed image looks much acceptable, the contrast is better mapped, the noise is strictly controlled.

Fig. 7. Test set 3 of the enhancing performance. (a)the original image with normal histogram equalization; (b)detail enhancement with the bilateral
filter; (c)detail enhancement with the guided image filter; (d)detail enhancement with the joint-bilateral filter; (e)detail enhancement of our new
algorithm with BEEPS.

Fig. 8. Test set 4 of the enhancing performance. (a)the original image with normal histogram equalization; (b)detail enhancement with the bilateral
filter; (c)detail enhancement with the guided image filter; (d)detail enhancement with the joint-bilateral filter; (e)detail enhancement of our new
algorithm with BEEPS.
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3.2. Computational time

Computational time is a very important index to evaluate whether an algorithm is applicable for industrial usage. We have
mentioned that although we have successfully migrated the bilateral filter in the FPGAs for real-time application, it takes up too much
on-chip rams and logic elements to deploy such big pipeline data structure. Also, the power consumption of the bilateral filter on the
hardware is way too much, that means, this algorithm will not work well on low-level FPGAs. The guided image filter and the joint
bilateral filter has the same problem. We test the computational time of all these 4 algorithms and find that, our new method has the
best performance in reducing the computational time.

Fig. 10 shows that our new algorithm is way much faster than the other methods. The bilateral filter and the joint bilateral filter
are way much slower because of their complicated convolutional calculation, also because of their non-linear nature. The guided

Fig. 9. Test set 5 of the enhancing performance. (a)the original image with normal histogram equalization; (b)detail enhancement with the bilateral
filter; (c)detail enhancement with the guided image filter; (d)detail enhancement with the joint-bilateral filter; (e)detail enhancement of our new
algorithm with BEEPS.

Fig. 10. The comparison of the computational time.
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image filter is much better in computational time than the former two methods, although guided image filter has complex con-
volutional calculation too, its linear nature helps in reducing the computational time. However, it still cannot reach the level of our
new algorithm, data shows that, the time-reducing effort of our new algorithm. The time has been reduced in orders of magnitude.
According to the equations in section 2, the application of this new algorithm is basically an iterative calculation, no complex
convolution kernel needs to be calculated during the process of the input images. The computational time of the whole algorithm only
cares about the dimension of the input image, and leave the image data, parameter selection aside.This algorithm can be migrated
into low and high-level FPGAs easily, and the power consumption will fall into a very satisfaction grade.The normal data operation
procedure in the FPGA such as the Grid-methods process the image data stream with the look out table to speed up the 2D calculation.
That means, when computing a target pixel value in the grid, all pixels within the grid. The computation will be take many times
since the grid is a 2D form, thus, repeated calculation occurs. When dealing with a certain line of selected pixels, three lines of data
must be flushed in the FPGA, the minim computational time is 192 μs. This will be much longer with the expansion of the grids. In our
method, 2D calculation has been simplified into 1D calculation, in which case, the calculation of the pixel within a selected line can
be finished with only one line of data with a total 64 μs at most, which is surely speed up the whole process.

3.3. Index comparison

In this section, we will compare the performances of our new algorithm with the latest proposed methods through some numerical
indexes. We choose the Background Variation-Detail Variation(BV-DV) index and the Root-Mean-Square Contrast (RMSC) index to
evaluate the performances of the selected algorithms.

The BV-DV index is used to evaluate the detail enhancement performance [10], it has a criterion to determine whether a pixel
belongs to the “background” or the “detail”. If the gray value of a chosen pixel fluctuates less with the adjacent pixels, it will be
marked as “background pixel”, otherwise, “detail pixel”. We calculate the BV index of all the determined background pixels and the
DV of all the determined detail pixels of Fig. 5–9. The results are showed in Fig. 11 as follows:

According to Fig. 11, the BV-DV index mainly focus on the detail enhancement performance of the processed image. Then, we use
the RMSC index to give another evidence of the contrast improvement. As we know, one character of the raw infrared image is that it
has wide dynamic range. Usually in an raw infrared image, the low temperature object and the high temperature object have big span
in gray scale. This can bring unacceptable contrast when display the raw image into 8-bit range. Thus, we choose the RMSC index to
illustrate the modified contrast by numerical values, and prove the superiority of our new algorithm with the index values and the
visual effects. The RMSC index can be calculated as follows:

∑ ∑=
×

−RMSC
M N

I i j I1 ( ( , ) ¯)
i j i j, ,

2

(13)

where Ī is the average gray value of the processed image. M and N are the number of rows and columns, respectively. By calculating
the ambiguity of every processed pixel value with the image mean, the modified contrast of the processed image can be clearly
illustrated. Larger RMSC value reflects larger contrast. The results are shown below (Fig. 12):

The BV-DV index and the RMSC index give us objective evidences that our new algorithm is superior than the other methods. In

Fig. 11. BV-DV index comparison of Figs. 5–9.
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all 5 figures, the BV index are close because the base layers are nearly the same. However, the DV index fluctuates strongly with all
five figures. This is because every edge-preserving method extracts different details and then enhances them. While in the RMSC
index, the new algorithm has better value evidence, that is to say, the modified contrast of the improved image is much suitable for
human observation.

4. Conclusion

In this paper, we proposed a new infrared image detail enhancement algorithm. This algorithm uses a bi-exponential called BEEPS
to extract the detail information of an infrared image. Although the BEEPS is a non-linear filter, the computational time of our
algorithm has been improved significantly. Visual effect and index test show that the new algorithm has superior advantages than the
former raised detail enhancement algorithms. According to the test on the FPGAs, we believe that this algorithm will be widely
applied in the real-world applications.
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