IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

3863

Learning Cross-Domain Features With Dual-Path Signal Transformer

Lei Zhai ™, Yitong Li, Zhixi Feng, Shuyuan Yang"™, Senior Member, IEEE, and Hao Tan

Abstract— The past decade has witnessed the rapid development of
deep neural networks (DNNs) for automatic modulation classification
(AMC). However, most of the available works learn signal features from
only a single domain via DNNs, which is not reliable enough to work
in uncertain and complex electromagnetic environments. In this brief,
a new cross-domain signal transformer (CDSiT) is proposed for AMC,
to explore the latent association between different domains of signals. By
constructing a signal fusion bottleneck (SFB), CDSIiT can implicitly fuse
and classify signal features with complementary structures in different
domains. Extensive experiments are performed on RadioML2016.10A
and RadioML2018.01A, and the results show that CDSiT outperforms
its counterparts, particularly for some modulation modes that are difficult
to classify before. Through ablation experiences, we also verify the
effectiveness of each module in CDSiT.

Index Terms— Automatic modulation classification (AMC),
cross-domain  transformer, multimodal learning, signal
transformer (SiT).

1. INTRODUCTION

Automatic modulation classification (AMC) is critical in nonco-
operative communication systems such as radio spectrum resources
monitoring and modern electronic warfare [1]. Traditional AMC
methods can generally be divided into two categories: likelihood-
based [2], [3] and feature-based [4] methods. The estimated results
of likelihood-based methods rely heavily on a large number of
observations, which will result in high computational complexity.
The feature-based methods need tedious “feature engineering” and
the dense modulation schemes in modern communication systems
often lead to unsatisfactory performance [5], [6], [7], [8], [9].

In very recent years, deep neural networks (DNNs) have been
developed for simultaneous feature extraction and modulation classi-
fication in an “end-to-end” manner. Compared to traditional methods,
they do not need any signal prior and have rapid predication. Various
types of DNNSs, including convolutional neural networks (CNNs)
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], recurrent neural
networks (RNNs) [20], hybrid networks [21], [22], and Transformers
[23], have been developed for AMC. Although these DNN-based
AMC methods achieve significant performance gains [24], [25], [26],
[27], [28], [29], [30], most of them deal with information from a
single domain. For example, TRNN [23] divides the in-phase and
quadrature (I/Q) signal of length n into several short sequences of
equal length whose size is (2a,b), a x b = n as the inputs. The
I/Q components of signal waveforms are adopted for modulation
classification in [10], [11], [12], and [21]. The time—frequency
spectrum is fed into LSTM2 for classification [20], and the cyclic
spectrograms of signals are employed in [18]. ICRNs [14] adopts
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the Choi—Williams distribution image of signals. Other descriptions
of signals are also considered, such as the constellation diagrams
[13], [15], high-order cumulants [17], and multitiming constellation
diagrams [16].

It is well known that modulation signals can be characterized from
various aspects, including amplitude, phase, frequency, power spectral
density, and constellation diagram. Each of these aspects reflects a
unique view of modulation type. However, one single view could not
reliably and stably reflect the intrinsic modulation characteristics in
uncertain and complex electromagnetic environments. For instance,
the waveforms of modulation signals will exhibit dramatic changes
as the modulation parameters vary. Also, the constellation shape and
direction of modulation signals, together with the signal strength and
spectral width, will change significantly in the presence of multipath
effects. On the other hand, signals with similar modulation types,
such as QAM32 and QAMO64 signals, may look very similar in
their constellation diagrams and waveforms. Therefore, in order to
accurately identify the modulation types in complex environments,
it is necessary to integrate the signal descriptions from multiple
domains.

Some pioneered works have been advanced for AMC by cascading
multidimensional descriptions of signals. For example, WSFM [31]
combines multiple signal modalities by concatenating intermediate
feature maps in CNN. In Ms-RaT [32], the amplitude and phase
patches are extracted from the signal spectrum and then concatenated
and fed into a multiscale network. However, they all adopt simple
feature slicing for multidomain fusion, which could not well explore
the association among multiple modalities.

As a recent research hotspot in machine learning, multimodal deep
learning (MDL) involves relating information and learning features
from multiple modalities via deep networks [24], [25], [26], [27],
[28], [29], [30], [33], [34]. It has been theoretically proven that MDL
is more powerful than single-modal deep learning since it can learn
better embedding via interaction among modalities [35]. Thus, mul-
tidomain description of modulation signals can be combined together
for learning more discriminative features. Inspired by it, in this brief,
a new cross-domain signal transformer (CDSiT) is constructed, where
a dual-path structure is used to learn cross-domain features of signals
for AMC. CDSIT primarily consists of signal embedding (SE), signal
transformer (SiT), and signal fusion bottleneck (SFB). These modules
are carefully designed to explore the internal association between
diverse characterization of signals. Extensive experiments are carried
out on several benchmark datasets to verify the effectiveness of
CDSIT.

Different from the available DNN-based AMC methods, the main
contributions of our work are summarized as follows.

1) MDL is introduced into AMC, to develop a new dual-path SiT

for cross-domain feature learning and classification of signals.
To the best of our knowledge, this is the first MDL-based AMC
work with transformer-like architecture.

2) CDSiT model is carefully designed for fine-grained representa-
tion and cross-domain fusion of multimodal signal sequences,
in which multihead self-attention and convolution are used
complementarily to capture long-range dependence and details
in signals.

2162-237X © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on July 04,2025 at 15:06:13 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-4935-6951
https://orcid.org/0000-0002-4796-5737

3864

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

(B, class num)

A1

Modulation Method !

T

[Classification Head J

TCN

(B,2,H) (B,C,H)
o
(. =
3| ] @
—> —> (1 =
(B,2,H) 2 > > &8P €
5 sl | =
L F g \ w <)
Wavwelet Transform .g pos E
(B,2,H) (I} (B,C,H) .%
il g =) | &
L — 5 & > > > & S [ £
* ﬁ) l"-’

o
o
7]

Power S;ectrum
L 1L

> ]
(B,C.H)

T T
Signal Pre-processing

Fig. 1.

3) Besides the combination mentioned in this brief, the
proposed method is extensible and can work with a wide
range of modalities. It is validated on some benchmark
datasets.

II. DUAL-PATH SIT
A. Problem Formulation

Assume that the received baseband signal {xi,x;,...,xy} is
transmitted over an additive white Gaussian noise (AWGN) channel
and sampled from pulses that meet the Nyquist limit, which can be
written as

x;(h)=a,e/ AHTAMIDG ), h=1,2,...,H (1)

where o, is the time-varying amplitude gain of the channel based on
the Rayleigh distribution in the limit of (0, 1]. A¢ represents the car-
rier phase offset that follows the uniform distribution U (0, 7/16]. Af
is the normalized carrier frequency offset. S, (h), ¢; = 1,2,...,C,
stands for the hth transmitted symbol extracted from the constel-
lations of the c¢;th modulation type, and C is the total number of
modulation types. w is the AWGN with mean 0 and variance o2.
H is the length of the signal.

For the received baseband signal, our goal is to make the predicted
distribution of the modulation scheme approach its true distribution,
which can be described as

. 138
argemm - Z z i log fo(x:) (@)

i=1 c=1

where N = Zle N,, in which N, is the number of observed signals
for each modulation type, f5(-) represents a classifier with learnable
parameters 6, and y,.(c) denotes the modulation type label of the
ith received signal with the cth modulation type.

B. Architecture of SiT

It is well known that modulation signals are typically long-time
sequences, which is suitable for transformer to model long-range
temporal dependence. Some works have shown that if a network
uses several convolution layers while maintaining a pure transformer
structure, its dependence on large amounts of data can be reduced
[36]. Thus, in our work, we design a new SiT primarily based on
multihead self-attention and convolutions over signals. First, an SE
module consisting of multiple 1-D convolution layers is constructed,
to extend the dimensionality of inputs and mine the interaction
information between the input channels. The convolutional layer
allows the model to retain local spatial information, and SiT can

Cross-domain Signal Transformer

Signal Fusion Bottleneck

Structure of CDSIT for fusing wavelet transform results of signals and their power spectrum.

achieve fine-grained representation of signal sequences for better
SE. Furthermore, this model need not map the signal to a specific
dimensionality and can deal with signals with arbitrary length, so it
has more flexibility than other models, such as ViT [25], [26], [27],
[28], [29], [30]. Then, temporal convolution is adopted to further
explore the temporal characteristics of signals.

Given a signal x € R?>*#, we first formulate the signal token
z0 c RC’XH’ by

2 = fE00) + g 3)

where SE f®(.) is implemented via convolutional layers, which can
extract the interaction features among channels. C’ is the number
of channels, and 1™ is a position encoding for preserving position

information [37] and can be physically encoded as

os s sin (i /10000%/H"
D) =[ /

o 4
o cos (i /100002 -/ @

where j € {1,2,..., H'/2}, i = pos; € {0, 1, ...
the jth position of the ith component.

Then, we feed the signal token z° into the constructed SiT
encoder fS1T(.), which consists of multiheaded self-attention (MSA),
multilayer perceptron (MLP), and layer normalization (LN). At the
Ith layer, 2’ = fST(z/~") can be expressed as

,C'}, and (i, j) is

7 =MSA(LN(Z ")) +2", I=1,...,L
z = MLP(LN(Z)) +Z', I=1,...,L. ®)

Finally, the prediction y € R® can be obtained through the
classification head with a temporal convolution network (TCN) block
FTN(), which can be expressed as

y = LN(f™N@")). (©6)

C. Signal Fusion Bottleneck

Cross-modal attention is commonly utilized in multimodal fusion,
where the query, value, and key are derived from various modalities.
In this brief, cross-modal attention is utilized to design a SFB fSF®
with a set of randomly initialized fusion tokens zl, to realize the
interaction among multidomain information. For example, fusing the
wavelet transform and the power spectrum of the signal, the SBF
FSBF can be calculated as

[zooul'] = i, (2o 22])
[zializi'] = fova (2 125]) @
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Algorithm 1 Forward Propagation of CDSiT

Input: Wavelet transform x,,,, Power spectrum x,,,, Layer
number of SiT encoder L, Layer number of CDSiT L.

Output: The signal label vector y

1 Random initialization the fusion token z}’st;

2 Calculate tokens z0, and zgow from Xy, and Xpoy as in eq. (3),
respectively;

3for/=1,2,...,L do

4 if ] < L; then

5 2o = ¥z, as in eq. (5);

6 L 2, = f31(2,) as in eq. (5);

7 else

S| A = (s s 7 G O
as in eq. (7);

9 y = LN(fTN(z)) as in eq. (6);
0 return y.

-

where ' is an intermediate variable of z', zl,., is the input power
spectrum sequence of the /th SiT layers f§'T, and z,, is the input
SIT

wavelet transform input sequence of the /th SiT layers fepow

D. Cross-Domain SiT

As shown in Fig. 1, the proposed CDSiT mainly consists of SE,
SiT encoder, SFB, and TCN block. The wavelet transform and the
power spectrum of signals are first fed into the SE module. Then, the
first Ly layer of CDSIiT is made up of two SiT encoders, f3T and
fgspgv. Finally, the fusion and classification of the two domain features
are then completed via SFB, TCN, and a linear classification head.
A detailed description of the forward propagation of CDSiT is shown

in Algorithm 1.

III. EXPERIMENT RESULTS
A. Dataset

In this section, we investigate the performance of the pro-
posed CDSIiT on the RadioML2016.10A dataset [40] and the
RadioML2018.01A dataset [10]. They are generated with GNU radio
project, with local oscillator (LO) drift, channel fading, and variable
SNR.

1) RadioML2016.10A Dataset: The RadioML2016.10A dataset
includes 220000 signals with SNRs ranging from —20 to
+18 dB and 11 types of modulations. Each signal sample is of
size 2 x 128, including I and Q components.

2) RadioML2018.01A Dataset: The RadioML2018.01A dataset
consists of 24 types of modulations (19 digital modulations
and five analog modulations). The SNRs of radio signals range
from —20 to 430 dB and the signal length is 1024.

We divide these two datasets into the training set, validation
set, and test set with the ratio of 6:2:2 and then preprocess each
signal sample into its power spectrum [41] and discrete wavelet
transformation (DWT) [42]. The power spectrum is defined as

|Fi ()]
2mH

where Fy(w) is the Fourier transform of signal x (%) in the time range
of h e [-H/2, H/2]. DWT can be expressed as

P(w) = lim

H—o0

(®)

+00

DWT(p.q) = a(;g/ x(h)yr(ay "t — qbo)dh (C)]

—00
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Fig. 2. Accuracy curves of different methods on (a) RadioML2016.10A
dataset and (b) RadioML2018.01A dataset.

where 1/ (-) is the wavelet basis function, p, ¢ =0, £1, 42, ..., and
aop, by, p, and ¢ are the results of discretization of continuous wavelet
transform scale parameter and translation parameter. In DWT, the
signal is decomposed into two parts, the low-frequency component
CA, and the high-frequency component CDy. In this brief, CA; and
CD;. are concatenated as inputs of the “wavelet transform” branch.

In the experiments, we use the logarithmic power spectrum and
the first-level Harr transform coefficients as inputs of dual path for
an efficient and simple realization. The experiment is repeated ten
times under the same condition and the average results are taken for
a comparison.

B. Performance of Cross-Domain SiT

In this section, we compare our proposed CDSiT with some state-
of-the-art DNN-based AMC methods, including LSTM2 [20], MCNet
[12], CLDNN [11], WSMF [31], TRNN [23], and Ms-RaT [32].
CDSiT and WSMF have dual inputs, while the others only have
one. In addition, we compare our proposed CDSIT with SiT trained
on wavelet transform data, SiT trained on power spectrum data
trained on wavelet transform data, and SiT trained on power spectrum
data, to investigate the performance of cross-domain learning. Fig. 2
shows that the overall accuracy (OA) of the RadioML2016.10A
and RadioML2018.01A datasets by the nine methods is shown in
Fig. 2(a) and (b), respectively. From the results, we can observe
that CDSIT has competitive performance in terms of OA on the two
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Fig. 3. Classification accuracy of the proposed model on RadioML2016.10A dataset with different SNRs. The input of CDSIT is wavelet transform coefficients
and power spectrum of the signal. In the legend, “wavelet transform” is SiT trained on wavelet coefficients of the signal, and “power spectrum” is SiT trained

on power spectrum of the signal. (a) QAM16. (b) QPSK. (c¢) WBFM.
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Fig. 4. Visualization of the input and output features of SFB on the RadioML2016.10A dataset. (a) Input of the SFB on wavelet transform branch. (b) Input

of the SFB on power spectrum branch. (c) Fused output of the SFB.

TABLE I
COMPARISON BETWEEN CDSIT AND TRADITIONAL METHODS

Input of model

Method Accuracy/%  Time/us
Power Wavelet
spectrum transform
v 12.0 2050.27
SVM
v 16.1 2645.86
v 29.0 185.55
KNN
v 29.9 188.49
v 27.0 0.73
DTree
v 18.2 0.73
v 39.0 1.13
XGBoost
v 35.1 1.16
. v 43.4 4119.77
SiT
v 60.4 4121.84
CDSIiT v v 62.4 4906.93

datasets. In Fig. 2(a), CDSIT has an improvement of 1.3%-7.1% over
the other methods. In particular, CDSIT has a large increase of OA at
SNRs from —8 to 0 dB, which validates its robustness and stability
in complex environments. Meanwhile, in Fig. 2(b), CDSiT has an
improvement of 1.9%-13.1% than the others. Similarly, compared
with its counterparts, CDSiT has an obvious advantage from —10 to
8 dB. This demonstrates the superiority of CDSiT to other methods.
Furthermore, we can also see that CDSIiT outperforms SiTs trained

solely on wavelet transform and power spectrum, which validates the
cross-domain learning capability of CDSIiT.

We then compare the performance of several traditional machine
learning methods, including support vector machine (SVM) [6],
K -nearest neighbors (KNNs) [7], decision trees (DTrees) [8], and
XGBoost [9], with the deep learning methods SiT and CDSiT. Power
spectrum and wavelet transform are separately or cascaded as inputs
of the models. Table I shows the OA and consumed time of these
methods. From the results, we can observe that compared with DNN-
based methods, the traditional methods have faster inference for
their shallow structure. For most of the traditional methods, using
the power spectrum as input led to higher accuracy for traditional
methods. However, deep learning methods are good at capturing
complex nonlinear relationships and achieve significantly higher
accuracy, up to twice as high as that of traditional methods. In terms
of both performance and complexity, CDSiT shows superior practical
applicability.

Table II compares the results of some combinations of multimodal
description from different domains, such as I/Q components, constel-
lation diagram, power spectrum, and wavelet transform. Experiments
are first conducted with two-modal inputs. Because the constel-
lation diagram is susceptible to noise, it can be observed that
the combinations, including constellation diagram, present relatively
poor performance compared to the other combinations (2.2%-7.7%
lower than the best results). On the contrary, the results of the
combinations, including wavelet transform, are significantly higher,
especially for the combination of wavelet transform with power
spectrum, which confirms the feasibility of our used combination
in CDSIT. In addition, experiments with more signal descriptions
as inputs are also conducted. Because the designed SFB can only
fuse two modalities, the CDSiT can be modified to deal with
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TABLE I
FUSION RESULT OF INPUT FROM EACH FIELD

Domain 1 Domain 2 Domain 3 Domain 4 Accuracy/%  Time/ms

1/Q Constellation diagram - - 58.9 4.88

1/Q Power spectrum - - 60.4 4.92

1/Q Wavelet transform - - 60.1 4.90
Constellation diagram Power spectrum - - 54.0 4.87
Constellation diagram Wavelet transform - - 59.5 4.87
Power spectrum Wavelet transform - - 62.4 491
/Q Constellation diagram Power spectrum - 56.5 10.87

/Q Constellation diagram  Wavelet transform - 59.5 10.85

1/Q Power spectrum Wavelet transform - 61.5 10.96
Constellation diagram Power spectrum Wavelet transform - 61.3 10.85
1/Q Constellation diagram Power spectrum Wavelet transform 60.9 91.82

TABLE III single-domain models for QAM16, QPSK, and WBFM are plotted

EFFECT OF DWT RESULTS CA; AND CD; ON OA

RadioML2016.10A RadioML2018.01A
1/Q 60.4% 61.3%
[CAy, CDy] 62.4% 64.6%
CAy 60.9% 62.7%
R(CAy) 60.3% 61.8%
R(C Ay, filter(CDy) 60.4% 62.1%

*[a, b] donates concatenate a and b. R(a) indicates that a will be reconfig-
ured. And filter(-) is the smoothing filter

n-modality inputs. In this case, there are possible C? fused models,
and the learned features by separate models can be averaged for
AMC. In Table II, we show the OA and inference time for n =3
and n 4. However, due to the representation capabilities of
different signal descriptions and increased model complexity, various
high-dimensional inputs have different performance improvements.
This suggests that it is necessary to select complementary multimodal
descriptions for classification. Simultaneously, as more modalities are
integrated, the inference time on a single sample also increases, along
with a slowdown improvement of model performance.

Furthermore, because DWT can generate two sets of coefficients:
CA; and CD,, various combinations of them will yield different
results of CDSIT. Table III shows the results produced by different
combinations of CA; and CDy, where [a, b] indicates that a and b
are concatenated to a feature whose length is the same as that of
original signal, R(a) is the mapping that reconstructs a back to the
length of the original signal, and filter(-) is a smoothing filter that
experimentally takes a Gaussian filter with mean O and variance 1.
From the results, we can see that higher precision can be achieved in
the case of concatenating CA; and CD; since it well preserves high-
and low-frequency information of the signal.

We further conduct experiments to compare the results of
two inputs with a single input for three categories in the
RadioML2016.10A dataset. The OA curves of CDSiT and two

in Fig. 3(a)-(c), respectively. From the results, we can observe that
CDSIiT has an accuracy improvement from 4.5% to 49.4% over
the single-domain methods for the classification of QAM16. Similar
improvements can be observed on the QPSK and WBFM. In addition,
from the results in Fig. 3(a) and (b), we can observe that the wavelet
transform has a significant positive influence on CDSIiT despite
very low OA by power spectrum. From the results in Fig. 3(c),
we can see that the power spectrum can better classify WBFM. This
also validates the complementarity of power spectrum and wavelet
transform.

In addition, Fig. 4 shows the visualization of the input and output
features of SFB on the RadioML2016.10A dataset. T-SNE [43] is
used to visualize the network features and to investigate how SFB
changes the representation of inputs as they pass through the fusion
layer. From the results in Fig. 4(a), we can observe that the wavelet
transform branch can learn a good feature distribution for BPSK,
AM-SSB, BPSK, CPFSK, PAM4, and QPSK, which suggests that
SFB can learn compact intraclass and separate interclass features. In
Fig. 4(b), most of the modulation classes have small interclass feature
distances and also have a large intersection of feature distributions.
This illustrates that the features in the power spectrum branches could
not distinguish most of the modulation classes but are discriminative
for AM-SSB, CPFSK, GFSK, and WBFM. Fig. 4(c) shows the
output features of SFB, from which we can observe that SFB
learns a good distribution of features for the modulation types and
reduces intraclass distances while increasing interclass distances.
In addition, by combining the advantages of the two paths, SFB
improves the recognition of some hard classes, such as QAM16 and
QAMO64.

We also perform ablation experiments for SE, SFB, and TCN block
on the RadioML 2016.10A dataset. Without these three modules,
the model structure is the same as that of CDSIiT, and the inputs
of the dual path remain unchanged. The input embedding is the
division of the input into multiple patches. In addition, the fusion part
connects the two feature maps, and the classification head is a linear
classifier. The remaining parameter settings are the same as those of
the CDSiT model. The experimental results are shown in Table IV,
from which we can see that the three modules are beneficial for
modulation classification. When the SE module and the SBF block
are used, the OA can be improved by 14.7% and 3.7%, respectively. In
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Fig. 5. Confusion matrix of the proposed CDSiT on RadioML2016.10A

dataset. (a) SNR =
(d) SNR = 18 dB.

—4 dB. (b) SNR = 0 dB. (¢c) SNR = 10 dB.

TABLE IV
ABLATION EXPERIMENTS FOR SE, SFB BLOCK, AND TCN BLOCK

Signal Embedding SFB block TCN block ‘ Accuracy/%

‘ 42.9

57.6
61.3
v 62.4

particular, SE, which has induction bias and local spatial information,
also plays an important role in model performance improvement.

Finally, we show the classification results of CDSiT with different
SNRs. The confusion matrices of the classification results with SNRs
—4, 0, +10, and +18 dB are shown in Fig. 5(a)—(c). From them,
we can observe that all modulation types are well distinguishable,
except that WBFM is easily confused with AM-DSB. Fig. 4(c) shows
that WBFM and AM-DSB have very similar feature distributions,
which will lead to misclassification. Because wavelet transform
separates the high- and low-frequency components of the raw signal,
CDSIT is robust to Gaussian noise. When it comes to identifying
high-order modulation modes, CDSiT also delivers excellent results
for efficient fusion of signal features across domains.

IV. CONCLUSION

In this brief, we propose a novel CDSiT model for AMC under
the paradigm of multimodality learning. The designed SE, signal
transform, SFB, and temporal convolution head are beneficial for
modeling the latent correlation in multimodal descriptions, to learn
more comprehensive and discriminative signal features for AMC.
Compared with the available works, CDSiT yields competitive results
in AMC by a tentative fusion of wavelet coefficients and power spec-
trum. Furthermore, CDSIT is scalable and can integrate information
from multiple domains in a simple way. The complementarity of more
signal descriptions will be investigated in future work.
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