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Abstract

The rise of embodied intelligence and multi-modal large001
language models has led to exciting advancements in the002
field of autonomous driving, establishing it as a prominent003
research focus in both academia and industry. However,004
when confronted with intricate and ambiguous traffic sce-005
narios, the lack of logical reasoning and cognitive decision-006
making capabilities remains the primary challenge imped-007
ing the realization of embodied autonomous driving. Al-008
though Vision Language Models (VLMs) have enhanced the009
deep semantic understanding of autonomous driving sys-010
tems, they exhibit notable limitations in decision explain-011
ability when handling rare and long-tail traffic scenar-012
ios. In this paper, we propose VLR-Driver, a novel multi-013
modal Vision-Language-Reasoning (VLR) framework based014
on Chain of Thought (CoT) for embodied autonomous driv-015
ing. The framework employs a spatiotemporal CoT reason-016
ing approach to recursively analyze potential safety risks017
and driving intentions of other agents, thereby delivering018
an efficient and transparent decision-making process. Fur-019
thermore, we construct a multi-modal reasoning-decision020
dataset to support the advancement of hierarchical rea-021
soning of VLMs in autonomous driving. Closed-loop ex-022
periments conducted in CARLA demonstrate that the VLR-023
Driver significantly outperforms state-of-the-art end-to-end024
methods. Notably, key metrics such as driving score im-025
proved by 17.5%, while the success rate improved by 22.2%,026
offering a more transparent, reliable, and secure solution027
for autonomous driving systems. The code, dataset, and028
demonstration video will be open-sourced.029

1. Introduction030

In recent years, the rapid progress of End-to-End (E2E) ar-031
chitectures [6, 7, 18, 49], Large Language Models (LLMs)032
[12, 41, 48], and embodied intelligence [26, 53, 55] has es-033
tablished these technologies as key enablers of innovation034
in autonomous driving. Especially, VLMs enriched with ex-035
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Figure 1. Comparison of different VLM-based AD systems. (a)
VLM model focuses more on answering questions, but it is diffi-
cult to convert decisions into coherent control signals. (b) VLA
model focuses more on predicting driving control signals, but
lacks interpretability. (c) The VLR model generates decisions and
controls signals with transparent reasoning processes through CoT,
enhancing the driver trust in the system.

tensive pre-training knowledge exhibit strong spatial under- 036
standing and common-sense reasoning abilities. DriveVLM 037
[35] leverages VLM to enhance spatial awareness and plan- 038
ning capabilities in complex driving scenarios. CoVLA [2] 039
integrates visual perception, language understanding, and 040
action planning, demonstrating remarkable effectiveness in 041
describing traffic scenarios and generating executable con- 042
trol actions. 043

However, the decision-making process of VLMs often 044
functions as a “black box”, making it challenging to trace 045
and interpret their underlying logic. This makes it diffi- 046
cult for autonomous driving systems to be fully trusted by 047
drivers when encountering complex and emergency situa- 048
tions, such as illegal roadside parking, navigating intersec- 049
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tions without traffic signals, and managing complex mixed-050
traffic interactions between motorized and non-motorized051
vehicles, thereby limiting their reliability and safety in real-052
world applications [39, 46, 54]. Moreover, most VLMs053
are trained on internet data, lacking spatial understanding054
and specialized training in the field of autonomous driving,055
making it difficult for them to fully adapt to dynamic and056
complex driving scenarios.057

Meanwhile, CoT reasoning demonstrates strong infer-058
ence, interpretability, and generalization capabilities by059
breaking down complex tasks into intermediate reasoning060
steps [40]. CoT enables systems to think step by step061
rather than relying on E2E black-box predictions, making it062
one of the key approaches toward achieving embodied au-063
tonomous driving. Sce2DriveX [52] enhances comprehen-064
sive perception and reasoning by introducing a multi-modal065
LLM framework with CoT, enabling a deeper understand-066
ing of spatiotemporal relationships and road topology. Sim-067
ilarly, DriveCoT [38] integrates CoT reasoning to improve068
decision-making interpretability and controll ability in au-069
tonomous driving systems. However, existing CoT-based070
methods heavily depend on predefined reasoning templates071
or limited training data, which may lead to misguided de-072
cisions in complex traffic scenarios. Additionally, current073
mathod primarily operate on static snapshots rather than074
continuous temporal sequences, limiting their ability to pre-075
dict future events in dynamic traffic environments.076

To bridge these gaps, in this work, we introduce077
VLR-Driver, a hierarchical CoT-based visual-language-078
reasoning model designed for closed-loop embodied au-079
tonomous driving. Our approach integrates the spatiotem-080
poral features from cross-modal data, including multi-frame081
multi-view images and ego-vehicle control signals, by em-082
ploying a SpatioTemporal CoT (ST-CoT) strategy that pro-083
duces human-like reflective reasoning processes and driving084
action decisions. Additionally, we adopt a dual-phase train-085
ing strategy, combining Low-Rank Adaptation (LoRA) [16]086
with an improved Stepwise Group Relative Policy Opti-087
mization (Step-GRPO) [34], significantly enhancing mem-088
ory capacity and deep reasoning abilities. Our proposed089
VLR-Driver not only inherits the global action optimization090
capabilities of VLA models, but also preserves the trans-091
parency of modular rule-based methods. When encoun-092
tering long-tail events and rare traffic scenarios, it demon-093
strates exceptional reflective reasoning and step-by-step in-094
ference processes, thereby enhancing human drivers’ trust095
in autonomous driving systems. The differences between096
VLM, VLA, and our proposed VLR are illustrated in Fig. 1097

To further enhance VLR models in environmental under-098
standing, reasoning, and decision-making, we introduce the099
VLR-Driver Dataset. This data set includes detailed scene100
descriptions, weather information, vehicle state details, and101
most critically, human-like CoT reasoning processes and102

the corresponding driving decisions. Various experiments 103
demonstrate that VLR-Driver is capable of making accu- 104
rate driving decisions and coherent reasoning, even under 105
challenging and highly dynamic road conditions. 106

The primary contributions of this work are summarized 107
as follows: 108

• Distinctive VLR-Driver Framework. We introduce 109
VLR-Driver, a visual-language-reasoning model devel- 110
oped for embodied autonomous driving. It generates a 111
human-like reflective reasoning process within the driv- 112
ing system, enabling accurate driving decisions. 113

• Spatiotemporal CoT. We present a spatiotemporal CoT 114
strategy that recursively analyzes potential safety risks 115
and the driving intentions of moving agents in complex 116
traffic scenarios, ensuring that the reasoning process of 117
driving decisions remains transparent and interpretable. 118

• Advanced VLR-Driver Dataset. We construct VLR- 119
Driver Dataset, a cutting-edge visual-language-reasoning 120
and decision-making dataset specifically designed for au- 121
tonomous driving. It supports the enhancement of spa- 122
tiotemporal understanding and reflective reasoning capa- 123
bilities in embodied autonomous driving systems. 124

• Superior Performance in Closed-Loop Simulations. 125
Extensive closed-loop experiments are conducted on the 126
CARLA platform. On the Bench2Drive benchmark, our 127
approach achieves a 17.5% improvement in driving score 128
and a 22.2% increase in success rate, providing a more 129
human-like, reliable, and trustworthy solution. 130

2. Related Work 131

2.1. End-to-end Autonomous Driving 132

The rapid advancement of E2E-AD has fostered a growing 133
transition away from modular rule-based methods toward 134
data-driven approaches [15, 23]. Based on different input 135
modalities, E2E methods can be categorized into visual- 136
only methods [5, 8, 10, 17] and vision-LiDAR fusion meth- 137
ods [1, 20, 21]. TCP [42] and NEAT [10] adopt imita- 138
tion learning methods, training directly on collected state- 139
action pair datasets, demonstrating the feasibility of E2E 140
approaches for autonomous driving. Roach [51] utilizes re- 141
inforcement learning experts as coaches, delivering dense 142
and informative supervision signals to agents equipped with 143
monocular camera inputs. However, vision-based meth- 144
ods inherently struggle with distance and depth estimation. 145
These limitations may compromise the reliability of driving 146
decisions [25]. To address these limitations, vision-LiDAR 147
fusion methods such as TransFuser [11], CrossFuser [43], 148
and FusionAD [47] have been designed to effectively in- 149
tegrate image with LiDAR data, significantly improving 150
the robustness of AD systems in complex environments. 151
However, different modalities contribute differently to the 152
driving task, and spatiotemporal synchronization issues be- 153
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Figure 2. Overview of VLR-Driver framework. We introduce VLR-Driver Dataset, an advanced visual-language-reasoning dataset
designed for autonomous driving, featuring detailed annotations of scene descriptions, analytical reasoning, and behavioral decisions.
We present VLR-Driver, a novel multi-modal visual-language-reasoning framework for embodied autonomous driving that leverages a
hierarchical spatiotemporal CoT reasoning mechanism.

tween sensor data can lead to inconsistencies, increasing154
both model complexity and training difficulty.155

2.2. VLM and VLA in Autonomous Driving156

VLMs unify visual perception with natural language pro-157
cessing capabilities, enabling a more comprehensive un-158
derstanding of driving environments [19, 36, 37]. By in-159
corporating cross-modal data fusion, integrating textual in-160
formation alongside visual inputs, these systems gain text161
comprehension and human interaction capabilities that con-162
ventional E2E models inherently lack. DriveGPT4 [45]163
enhances LLMs’ ability to process multimodal inputs by164
projecting them into the text domain, thereby enabling in-165
terpretable end-to-end autonomous driving. Senna [24]166
and DriveVLM [35] integrate VLMs with either traditional167
modular pipelines or E2E frameworks, achieving a decou-168
pling between high-level planning and low-level trajectory169
prediction. This approach enhances planning performance170
while preserving the model’s common sense reasoning ca-171
pabilities.172

Moreover, VLA represents an emerging paradigm that173
unifies visual perception, natural language understanding,174
and action prediction within a cohesive framework [13, 26].175
Originally introduced in the field of robotics, RT-2 [4] pi-176
oneered the representation of robotic actions as text to-177

kens, seamlessly incorporating them alongside natural lan- 178
guage labels into the model’s training set. This approach 179
facilitates the direct transfer of internet-scale knowledge to 180
robotic control, significantly enhancing both the general- 181
ization and semantic reasoning capabilities of robotic sys- 182
tems. In the context of autonomous driving, CoVLA [2] in- 183
troduces an interpretable VLA model, seamlessly integrat- 184
ing visual perception, language-based scene understanding, 185
and action planning. This integration enhances the system’s 186
ability to comprehend complex driving scenarios, antici- 187
pate trajectory outcomes, and execute informed driving de- 188
cisions. However, despite these advancements, VLA mod- 189
els still exhibit limitations in accurately predicting precise 190
control action values, leading to a low lower-bound in au- 191
tonomous driving performance. Furthermore, when con- 192
fronted with highly dynamic and complex traffic scenarios, 193
their deep understanding and reasoning capabilities remain 194
insufficient. Unlike the above methods, our proposed VLR 195
model places greater emphasis on step-by-step reasoning 196
and the thought process of the model, providing drivers with 197
increased confidence in using autonomous driving systems. 198

2.3. Chain of Thought 199

The CoT technology is an extension of prompt engineer- 200
ing, proposed by Wei Jason in 2022 [40], which has greatly 201
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improved the effectiveness of reasoning for complex prob-202
lems. The highly anticipated Deepseek-R1 [33] model also203
utilizes the CoT technique, which deeply integrates multi-204
modal knowledge base data, enabling the model to generate205
a step-by-step thinking process. DriveCoT [38] has built206
a CoT dataset that includes sensor data, control decisions,207
and CoT labels used to indicate reasoning processes. The208
model trained on this basis can generate predictions and fi-209
nal decisions with CoT, effectively improving model per-210
formance. LanguageMPC [30] combines LLM with Model211
Predictive Control and decomposes driving decisions into212
multiple subtasks through a CoT framework. This method213
enables the auto drive system to think like human beings,214
and improves its ability to handle complex scenes. Open-215
EMMA [44] introduces CoT technology to guide model216
generation of detailed descriptions of key objects, behav-217
ioral insights, and meta driving decisions, improving system218
transparency and usability. Motivated by these advance-219
ments, we apply step-by-step hierarchical spatiotemporal220
CoT to autonomous driving, enhancing the interpretability221
of reasoning and decision-making.222

3. Method223

We present the motivation and design details of our VLR-224
Driver framework. As depicted in Fig. 2, VLR-Driver com-225
prises two main components: the VLR-Driver Embodied226
Agent and the VLR-Driver Dataset. Initially, we intro-227
duce the design concept of the VLR model, which builds228
upon enhancements to the VLA model (Sec. 3.1). Sub-229
sequently, we elaborate on the hierarchical spatiotemporal230
CoT methodology (Sec. 3.2) and the specifics of the dual-231
phase training strategy (Sec. 3.3).232

3.1. Overview233

The VLR model is a large visual-language-reasoning model234
designed for embodied autonomous driving. It can pro-235
cesses visual inputs, such as multi-view images, alongside236
textual information, including vehicle control signals. The237
model is capable of extracting spatiotemporal key features238
within a multi-modal embedding and recursively analyz-239
ing potential safety risks and the driving intentions of other240
agents within the reasoning level of the VLR model. Ul-241
timately, it formulates a comprehensive reasoning frame-242
work and well-structured decision-making outputs, explic-243
itly identifying critical risk factors and the underlying ra-244
tionale behind each decision. This process significantly re-245
inforces the robustness and safety of the autonomous driv-246
ing system, ensuring adaptive resilience in complex and dy-247
namic environments.248

In this study, we employ pre-trained LLaVA-NeXT-249
Video [50] as the VLM and CLIP [29] as the visual encoder.250
The model is capable of processing multi-frame multi-view251
image data that capture historical temporal context, while252
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Figure 3. Illustration of the ST-CoT reasoning process. In this sce-
nario, where some vehicles are illegally parked ahead and blocking
the lane, our method can conduct hierarchical patiotemporal rea-
soning analysis and make a decision of change left lane once the
adjacent lane is free.

also extracting real-time vehicle sensor information to fa- 253
cilitate dynamic and context-aware decision-making. 254

Input Representations. We utilize Nf frame and Nv 255
view images from the past period, with a field of view 256
(FoV) of 70 degrees. It can be represented as V ∈ 257
RNf×Nv×3×H0×W0 . At the same time, there are also the 258
current position (x, y) of ego vehicle, the speed v, the tar- 259
get point position (p, q). Subsequently, the compressed and 260
cropped image data and the information from the ego’s sen- 261
sors are input into the model. 262

Output Representations. Our output consists of the 263
reasoning process and driving decisions generated by the 264
VLR model for the current driving scenario. This includes 265
risk identification, traffic signal recognition, motion direc- 266
tion prediction, and autonomous driving decision-making. 267
The driving decision will also be fused with the spatiotem- 268
poral information features extracted by the E2E model, and 269
finally output the waypoints and control signals of the vehi- 270
cle for the next moment. 271

3.2. Spatiotemporal CoT Reasoning 272

To enhance the reasoning capabilities and transparency of 273
the autonomous driving system, we introduce a hierarchical 274
ST-CoT that guides the model to approach driving decisions 275
in a human-like manner. Our method decomposes the driv- 276
ing decision-making process into two levels: a perception- 277
level spatiotemporal CoT Cperception, which focuses on ex- 278
tracting and understanding environmental dynamics, and a 279
decision-level dynamic CoT Cdecision, which refines and 280
optimizes decision-making based on contextual and tempo- 281
ral factors. The example of CoT is shown in Fig. 3. 282

4



ICCV
#14508

ICCV
#14508

ICCV 2025 Submission #14508. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

3.2.1. Perception Level CoT283

The spatiotemporal characteristics of the environment play284
a crucial role in the autonomous driving process. The per-285
ception level CoT is responsible for guiding the model to286
extract spatial and temporal features from input image data,287
identify and locate crucial objects in the traffic, such as ve-288
hicles, pedestrians, alien objects, traffic lights, traffic signs,289
etc., and extract historical behavioral features of dynamic290
agent based on temporal information. Our method enables291
VLR model to describe the current driving scenario, con-292
struct real-time spatial layout and dynamic changes of the293
environment, and achieve long-term planning for driving294
decisions.295

Spatial CoT. In driving scenarios, we primarily focus on296
obstacles that impact the ego’s normal operation, including297
object categories Otype and distances with the ego Odis. A298
critical aspect of safe driving is identifying potential risk299
points within the current lane. Additionally, when the ve-300
hicle executes lane changes, objects in adjacent lanes, both301
left and right, may significantly influence its movement. Be-302
yond obstacles, key traffic light Slight, traffic signs Ssign,303
and lane markings Smark are also integral to decision-304
making, ensuring comprehensive spatial awareness.305

Temporal CoT. While a single-frame image can provide306
a static representation of road scenes and traffic partici-307
pants, it fails to capture the motion trends of moving agents.308
To address this limitation, we introduce consecutive frames309
I = {If , Ifr, Ifl, Ib, Ibl, Ibr}Tnow

t=Tnow−T into the model, al-310
lowing it to track temporal variations in object positioning,311
which If , Ifr, Ifl, Ib, Ibl, Ibr represents the image view of312
front, front left, front right, back, back left and back right.313
These sequential frames not only offer instantaneous spa-314
tial context but also reveal motion trajectories and behav-315
ioral patterns through their inter-frame positional changes.316
This temporal information is essential for predicting dy-317
namic object movement, assessing collision risks, and gen-318
erating robust path planning strategies, ultimately enhanc-319
ing the ability of anticipate and react to evolving traffic con-320
ditions.321

3.2.2. Decision Level CoT322

The output information from the perception-level serves as323
a critical foundation for the driving decision level, enabling324
reliable autonomous driving behavior inference. Within the325
driving decision level, we account for complex dynamic en-326
vironmental factors, transforming spatial and temporal in-327
formation from the perception level into concrete driving328
decisions. Specifically, decision-makers must not only an-329
alyze the current driving environment in real time but also330
anticipate future behaviors of other traffic participants and331
make decisions based on multiple factors. Throughout this332

process, the CoT in the driving decision level spans mul- 333
tiple perspectives, incorporating safety, efficiency, comfort, 334
and compliance with traffic regulations to ensure that driv- 335
ing decisions meet safety standards while optimizing driv- 336
ing efficiency. 337

To further enhance the structured reasoning process in 338
autonomous driving, we have carefully designed hierarchi- 339
cal reasoning prompts that guide decision-making. Our 340
structured prompts follow a logical sequence of “risk point 341
recognition — driving intention prediction — driving deci- 342
sion selection”, forming a cohesive reasoning chain aligned 343
with human cognitive driving patterns. 344

Risk Point Recognition. In this initial stage, the prompt- 345
driven model conducts a comprehensive perception and 346
analysis of the driving environment. This includes recog- 347
nizing and evaluating critical elements such as traffic signs, 348
lane markings, pedestrians, and obstacles to identify poten- 349
tial risks. 350

Driving Intention Prediction. Once risk points are iden- 351
tified, the model leverages dynamic target behavior predic- 352
tion and scene understanding to infer the potential move- 353
ments and intentions of other road users. For instance, the 354
model assesses whether pedestrians are likely to cross the 355
road or whether the vehicle ahead intends to change lanes. 356

Driving Decision Selection. Based on the contextual in- 357
formation gathered from the first two stages, the model ap- 358
plies multimodal information fusion and weighted decision- 359
making to select the most optimal driving maneuver. 360

Through this structured prompting strategy, the large 361
model adheres to a progressive reasoning hierarchy, begin- 362
ning with fundamental environmental perception and ad- 363
vancing to higher-level decision-making. By explicitly pre- 364
senting the reasoning process in a clear and structured man- 365
ner, this approach enhances passenger trust and confidence 366
in the intelligent driving system. Moreover, the integration 367
of recursive CoT reasoning enables the model to mimic the 368
step-by-step thought process of human drivers, facilitating 369
more flexible, reliable, and interpretable decision outputs in 370
complex driving scenarios. The structured prompt frame- 371
work are shown in Fig. 3. 372

3.3. Training Paradigm 373

VLR-Driver adopts a dual-phase training strategy to opti- 374
mize its reasoning and decision-making capabilities. In the 375
first phase, LoRA [16] is utilized for supervised fine-tuning 376
on a pre-trained large model, enabling efficient adaptation 377
with minimal memory and computational overhead while 378
maintaining strong performance. In the second phase, Step- 379
GRPO is applied for reinforcement learning based on hu- 380
man preferences, further enhancing the model’s ability to 381
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exhibit human-like reasoning and decision-making charac-382
teristics.383

Training with LoRA. LoRA is a parameter-efficient fine-384
tuning technique that enables effective model adaptation by385
performing a low-rank decomposition of the weight matrix.386
The core principle behind LoRA is to decompose the weight387
matrix of a pre-trained model into a low-rank structure,388
significantly reducing the number of trainable parameters389
while preserving expressivity. Specifically, if the weight390
matrix in the pre-trained model is denoted as W0 ∈ Rd×k,391
LoRA represents it as:392

W ′ = W0 +∆W = W0 +
α

r
B ·A, (1)393

where A ∈ Rr×k and B ∈ Rd×r, r is the rank of a low rank394
matrix, usually much smaller than d and k, α is a scaling395
factor. The forward pass is computed as:396

y = W ′x =
(
W0 +

α

r
B ·A

)
x, (2)397

where y is the output and x is input.398
We use LoRA for all linear modules, which not only399

saves computation but also ensures the performance of the400
model.401

Training with GRPO. The core principle of GRPO [34]402
is to optimize strategies by assigning relative rewards to403
multiple outputs generated from the same prompt, thereby404
eliminating the need for additional value function models.405
The introduction of process reward model estimation in406
GRPO provides finer support for distributed rewards. The407
reward of each step of the outputs is:408

R =
{{
r
index(1)
1 ,· · ·, rindex(K1)

1

}
,· · ·,

{
r
index(1)
G ,· · ·, rindex(KG)

G

}}
,

(3)409
where index(·) is the end token index, and the reward need410
be normalized as:411

r̃
index(j)
i =

r
index (j)
i − mean(R)

std(R)
. (4)412

We extend GRPO by introducing reasoning Step-GRPO,413
a supervised reasoning decision process that structures the414
output into multiple steps based on the CoT reasoning415
framework. At each step, a reward function is applied to416
evaluate and assign scores, enabling fine-grained feedback417
that enhances model interpretability and accelerates con-418
vergence. Specifically, we first generate multiple candi-419
date decision answers for the current driving scenario us-420
ing prompts within the VLR model; Then, following our421
ST-CoT strategy, the reasoning process is divided into four422
distinct steps: scene description, spatial risk point reason-423
ing, dynamic trajectory prediction, and driving decision-424
making; Furthermore, each reasoning step is assigned a re-425
ward to encourage structured learning. Finally, we compare426

all answers within the group and calculate the Kullback- 427
Leibler (KL) divergence to update the policy model. This 428
grouping and step-by-step scoring strategy enhances train- 429
ing efficiency and reduces the likelihood of erroneous rea- 430
soning in the model. 431

4. VLR-Driver Dataset 432

To fully explore the reasoning and decision-making capabil- 433
ities of large language models, we propose an advanced rea- 434
soning and decision-making dataset for autonomous driv- 435
ing scenarios, called the VLR-Driver Datasets. This dataset 436
relies on the CARLA [14] simulator for data collection 437
and is expanded and meticulously annotated based on the 438
Bench2Drive dataset [22]. It includes: a) multi-view multi- 439
frame images or videos, b) valuable information for au- 440
tonomous driving, such as road details, weather conditions, 441
vehicle information, and scene descriptions, and c) driv- 442
ing decision choices along with the decision-making pro- 443
cess based on a ST-CoT. This dataset provides a rich and 444
comprehensive training foundation for autonomous driving 445
reasoning and decision-making, allowing the agent to ex- 446
hibit human-like reasoning while interacting with the envi- 447
ronment. The dataset includes 20,000 sets of multi-frame, 448
multi-angle image data collected from various road con- 449
ditions such as urban, rural, and highways in the CARLA 450
simulator, covering over 40 specific complex traffic scenar- 451
ios (e.g., forward accidents, dynamic object crossings, etc.). 452
Each image set provides road scene descriptions, environ- 453
mental weather information, vehicle status data, and, most 454
importantly, the human-like reasoning process and driving 455
behavior decisions. 456

4.1. Data Collection 457

We conducted data collection based on the 44 corner scene 458
classifications provided by Bench2Drive to ensure optimal 459
autonomous driving performance in various complex corner 460
scenarios. The Bench2Drive dataset offers a rich array of 461
data and annotations, including multi-angle images, lidar, 462
radar, vehicle information, and expert assessments, which 463
have been instrumental in building our VLR dataset. Ad- 464
ditionally, we selected over 40 scenes where autonomous 465
driving’s reasoning and decision-making capabilities are 466
relatively weak, using them as the visual and textual compo- 467
nents of our dataset. We further expanded and enriched the 468
dataset by collecting additional data in the CARLA simula- 469
tor. We have taken into account various weather conditions, 470
road conditions, and the types and numbers of traffic partic- 471
ipants in the scene. 472

Weather. For each scene, we randomly set values 473
for cloudiness, fog density, precipitation, precipitation de- 474
posits, sun altitude angle, sun azimuth angle, wetness, and 475
wind intensity. The combinations of these parameters cover 476
a variety of weather conditions, such as sunny, rainy, foggy, 477
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Table 1. The comparison of core metrics and subdivision infraction scores with state-of-the-art E2E/VLM models on the Bench2Drive
benchmark. C, L and T indicate camera, LiDAR and text modalities, respectively. DS, RC, IS, SR correspond to the Driving Score,
Route Completion, Infraction Score, and Success Rate. CP, CV, CL, RL, SS, OR, AB, YEV correspond to the Collision with a Pedestrian,
Collision with another Vehicle, Collision with Layout, Red Light infractions, Stop Sign infractions, Off-Road infractions, Agent Blocked,
and failure to Yield to Emergency Vehicles infractions.

Method Type Modality Core Metrics ↑ Subdivision Infraction Score ↓
DS RC IS SR CP CV CL RL SS OR AB YEV

NEAT [10]

E2E

C 30.86 55.35 0.55 6.81 1.08 9.87 5.57 0.20 1.33 0.41 2.01 0.27
TCP [42] C 56.28 83.57 0.65 25.00 0.26 5.46 5.46 0.00 0.52 0.22 0.78 0.00

LeTFuser [1] C+L 52.53 77.68 0.67 18.18 1.16 5.54 3.79 0.29 0.87 0.12 0.58 0.29
LateFusion [28] C+L 48.53 58.32 0.85 18.18 0.38 3.11 1.55 0.38 0.77 0.06 1.55 0.38
TransFuser [11] C+L 37.18 68.14 0.51 9.09 0.96 13.24 8.71 0.00 0.96 0.32 2.58 0.32
ThinkTwice [21] C+L 58.79 74.35 0.77 29.54 0.30 5.76 0.91 0.00 0.91 0.05 0.91 0.30

EATNet [9] C+L 42.97 78.84 0.54 15.91 0.82 14.01 1.92 0.00 1.64 0.22 1.09 0.27
InterFuser [31] C+L 63.81 80.46 0.79 40.90 0.35 3.81 0.54 0.27 1.08 0.05 0.54 0.27

LMDrive [32] VLM C+L+T 24.76 33.02 0.90 13.63 1.14 2.86 2.29 0.00 0.57 0.05 3.44 0.57
LeapAD [27] C+T 55.18 77.45 0.71 36.36 0.69 5.07 1.15 0.20 0.91 0.08 1.47 0.27

VLR-Driver (Ours) VLR C+T 75.00 86.08 0.87 50.00 0.72 2.83 0.48 0.00 0.48 0.04 0.24 0.24

Table 2. The comparison of driving advanced ability and experi-
ence score with state-of-the-art models on the Bench2Drive bench-
mark. OT, MER, EB, GW, TS, DE, SC correspond to the OverTak-
ing, MERging, Emergency Brake, Give Way, Traffic Sign, Driving
Efficiency, and Smoothness Control.

Method
Driving Advanced Ability ↑ Exper. Score ↑

OT MER EB GW TS Mean DE SC

NEAT [10] 0.00 6.66 9.09 50.00 27.77 18.70 92.09 0.30
TCP [42] 25.00 13.33 27.27 50.00 50.00 33.12 114.52 0.27

LeTFuser [1] 0.00 20.00 18.18 0.00 47.22 17.08 115.09 0.47
LateFusion [28] 0.00 20.00 9.09 0.00 36.11 13.04 104.39 0.59
TransFuser [11] 0.00 13.33 9.09 0.00 36.11 11.71 95.20 0.36
ThinkTwice [21] 12.50 20.00 36.36 50.00 52.77 34.33 91.17 0.36

EATNet [9] 0.00 13.33 18.18 0.00 41.66 14.63 88.13 0.33
InterFuser [31] 0.00 46.66 54.54 50.00 61.11 42.46 119.20 0.32

LMDrive [32] 25.00 6.66 9.09 50.00 2.77 18.70 75.41 0.22
LeapAD [27] 12.50 33.33 27.27 50.00 44.44 33.51 93.33 0.26

VLR-Driver (Ours) 37.50 46.66 72.72 50.00 72.22 55.82 125.22 0.59

broken sky, and stormy, as well as different lighting condi-478
tions for day and night.479

Roads. The scenes include various road types such as ur-480
ban two-way single-lane roads, multi-lane roads, highways,481
and narrow rural roads.482

Traffic Participants. Different corner cases involve var-483
ious traffic participants, including cars, bicycles, pedestri-484
ans, ambulances, etc., simulating the complex traffic condi-485
tions encountered in daily driving.486

4.2. Data Annotation487

The reasoning chain process and the decision-making488
choices are crucial for training large autonomous driving489
models and are key to enhancing the model’s human-like490
reasoning ability. Therefore, we performed secondary an-491
notation on the dataset we collected.492

Driving Scene Descriptions. We used the pre-trained493
large visual language model Qwen2-VL [3] to generate de-494
tailed descriptions for the corresponding driving scenes.495
These descriptions primarily focus on environmental infor-496

mation such as road conditions, weather, and lighting, as 497
well as dynamic targets like vehicles and pedestrians that 498
may pose driving risks. 499

Reasoning Decisions and Process. We considered pre- 500
annotated information such as vehicle speed, acceleration, 501
steering angle, traffic light status, and the state of the vehi- 502
cle ahead. A rule-based method was used to determine the 503
true values of future motion behaviors based on the deci- 504
sion choices made at earlier time steps. Additionally, we 505
completed the predefined CoT reasoning text statements. 506
Finally, to ensure the accuracy and consistency of the an- 507
notations, especially for decision choices, carefully manual 508
verification was carried out. 509

5. Experiment 510

5.1. Experimental Setup 511

Our method was validated on the open source autonomous 512
driving simulation platform CARLA 0.9.15 [14]. The VLR- 513
Driver model was trained on a server equipped with 8 514
NVIDIA A800 GPUs (each with 80G of video memory) 515
for approximately 50 hours. The dataset used was the 516
VLR-Driver dataset that we developed. Specifically, we use 517
ViT-g/14 from EVA-CLIP [29] as the vision encoder and 518
LLaVA-NeXT-Video-7B [50] as the VLM. The resolution 519
of the input image is set to 336 × 336 pixels. 520

5.2. Metrics 521

We employ four core metrics to evaluate autonomous driv- 522
ing performance: driving score (DS), route completion 523
(RC), infraction score (IS), and success rate (SR). Addi- 524
tionally, to provide a more granular assessment of model 525
performance in specific aspects, we introduce three supple- 526
mentary evaluation categories: subdivision infraction score, 527
driving advanced ability, and driving experience score [22]. 528
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A scene on a city street. 
There are several cars 
traveling on the wide 
road.  The ego vehicle is 
following a red vehicle 
and a yellow test vehicle.
Maintain speed and go 
straight.
Throttle = 1.0, brake = 
0.0, steer= 0.0

Ø Scene Description:  The image depicts a residential or suburban 
neighborhood with houses, fenced yards, and sidewalks. Heavy rain 
is falling, causing reduced visibility and wet road conditions.

Ø Spatial CoT:  A yellow taxi is present on the right, and a cyclist is 
visible on the left, riding on the sidewalk.

Ø Temporal CoT:  The taxi and cyclist are stationary.
Ø Reflective Reasoning:  Cyclist presence requires extra caution at the 

intersection, it rides near the sidewalk and may cross the road.
Ø Decision-making:  Slow down and turn left.
Ø Control Signal:  Throttle = 0.0, brake = 0.1, steer= -0.6

In a rural environment, I 
can see some vehicles 
and pedestrians on the 
road. You are 
approaching the edge of 
the road.
You should turn left to 
avoid other vehicles.
Throttle = 1.0, brake = 
0.0, steer= -0.5

�                                       � + 5�                                 � + 10�

Ø Scene Description:  It shows a multi-lane highway or expressway 
with a divided median barrier. The road is surrounded by dense 
green trees, suggesting a suburban or rural setting with good visibility.

Ø Spatial CoT:  A temporary road sign trailer is blocking the lane ahead.
Ø Temporal CoT:  A vehicle in left lane is moving with a high speed.
Ø Reflective Reasoning:  Vehicles in the left lane seem to be merging or 

adjusting speed, you should pay attention to the speed of the 
vehicles behind you and not affect their driving

Ø Decision-making:  Adjust speed and change left lane.
Ø Control Signal:  Throttle = 0.8, brake = 0.0, steer= -0.4

 � + 10�

�                                       � + 5�                                 � + 10�  � + 10�

(a) Vehicle turning route with bicycle crossing.

(b) Construction obstacle.

Figure 4. Visual comparison between VLR-Driver and VLM-
based methods. The ST-CoT guides the VLR model to approach
driving decisions in a human-like spatiotemporal manner. Based
on the sequence of images from the preceding time period T , we
derive the following inference results. The images captured at 5
and 10 seconds afterward validate the accuracy of our decisions.

5.3. Comparisons with Existing Methods529

We conducted comprehensive experiments with the SOTA530
methods including E2E and VLM in the CARLA simula-531
tor with Bench2Drive Benchmark. We present comparison532
result in Tab. 1. It can be seen that our method outper-533
forms other methods in key metrics such as DS, RC, and534
SR, achieving first place and effectively improving DS by535
17.5%, mean of driving ability by 31.4%, and SR by 22.2%.536

The comparison results of the driving advanced ability537
and driving experience score of each method are shown in538
Tab. 2. Our method achieved the best results in all abili-539
ties, thanks to the deep reflection and reasoning ability of540
our VLR model, which has stronger traffic reasoning ca-541
pacity in special road conditions. Most E2E methods can542
only achieve following the vehicle, but when there is a ve-543
hicle temporarily parked in the lane ahead, blocking the self544
driving route, they will keep stopping and waiting, making545
it impossible to complete the entire route. And our VLR-546
Driver can achieve deep understanding and inference of the547
current scene through large-scale model inference, so as to548
make timely detours.549

Table 3. Ablation study for each module.

ID Abal. Exp. Core Metrics ↑ Driving Advanced Ability ↑
DS SR OT MER EB

1 VLR Full Model 71.48 54.54 37.50 46.66 72.72

2 Arch. w/o CoT 57.17 34.09 25.00 40.00 41.66
3 w/o VLR-Model 46.39 20.45 14.28 26.66 36.36

4 Train w/o VLR-Data 52.85 27.27 25.00 26.66 9.09
5 w/o Step-GRPO 65.57 45.45 37.50 40.00 63.63

5.4. Ablation Study 550

We conducted a comprehensive ablation study, detailed in 551
Tab. 3. The experimental configurations include four vari- 552
ants: (1) Without utilizing our proposed spatiotemporal 553
CoT strategy, using only a question-based approach with- 554
out reasoning guidance. (2) Without using our VLR model, 555
instead employing a standard LLM module. (3) Removing 556
the VLR data used to guide the reasoning process. (4) With- 557
out Step-GRPO reinforcement learning training, using only 558
LoRA strategies to fine-tune the model with supervision. 559
The results show the effectiveness of each contribution. 560

5.5. Visualization 561

We selected some special scenarios to visualize the per- 562
formance in complex traffic situations with reflective rea- 563
soning, and the comparison results shown in Fig. 4. The 564
ST-CoT enables the model to make driving decisions with 565
human-like reasoning, considering both spatial and tempo- 566
ral dynamics. More visual comparison results can be found 567
in the Appendix. 568

6. Conclusion 569

In this paper, we introduce VLR-Driver, a VLR model for 570
embodied AD. It leverages a carefully designed ST-CoT 571
strategy to guide the model in recursively analyzing po- 572
tential safety risks and the driving intentions of dynamic 573
agents in complex traffic scenarios. Our dual-phase train- 574
ing method significantly enhances the generalization of the 575
model. Additionally, we propose the VLR-Driver dataset, 576
which effectively integrates spatiotemporal perception, lan- 577
guage understanding, and reflective reasoning, providing 578
crucial support for interpretability reasoning in AD sys- 579
tem. Experimental results show that VLR-Driver outper- 580
forms other methods on Bench2Drive, achieving cutting- 581
edge performance and paving the way for EAI realization. 582

Limitations and future work. There are differences be- 583
tween the data in simulation platforms and the real world. 584
How to transfer and adapt it to a real-world style remains an 585
important area for further exploration. 586
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